
Fast performance analysis of NAND
flash-based storage device

S.K. Won, S.H. Ha and E.Y. Chung

A fast performance analysis method for NAND flash-based storage
devices (NFSDs) is proposed. The method first profiles the operational
statistics of an NFSD and then estimates its throughput based on the
proposed model. Experimental results show that its accuracy reaches
up to 98.7% of the cycle-accurate simulation, while the analysis
speedup is more than three orders of magnitude. Also, the generality
of the method is shown by applying it to NFSDs with an arbitrary
number of channels.

Introduction: A NAND flash-based storage device (NFSD) has
received much attention as a next generation storage device. One of
its advantages is its read/write throughput compared to hard disk
drives (HDDs). However, its performance is still insufficient to amortise
its bit cost which is higher than that of HDDs. For this reason, efforts to
improve the performance of NFSDs are continuing.

A typical architecture of an NFSD is shown in Fig. 1. It consists of
two parts: a controller and NAND flash memories (NFMs). The
NFMs store the data and the controller manages the data as well as
the hardware resources. These two parts are communicating with each
other through channels. Furthermore, several NFMs are connected to a
single channel in a time-multiplexed (interleaved) manner. The
number of channels determines the overall bandwidth, while the inter-
leaving depth (the ways) affects the channel utilisation. Another per-
formance critical component is a software layer running on the
processor called the flash translation layer (FTL). It translates the
logical addresses from the host machine to the physical addresses of
NFMs. Also, it performs garbage collections to hide the bad character-
istics of NFMs such as the limited cell lifetime and erase-before-write.
Depending on its algorithm, the NFM access pattern largely varies,
which eventually affects the channel utilisation and the overall perform-
ance of an NFSD. For this reason, we need to consider the effect of FTLs
in conjunction with the effect of the channels and ways for analysing the
overall performance. Unfortunately, most of the previous works focus-
ing on FTLs ignored the hardware (channels and ways) effect [1],
while the hardware oriented works ignored the effect of the FTL [2].
In these works, the hardware modelling effort and the simulation
speed are the major obstacles to take both effects into consideration.
We tackle this issue in the work reported in this Letter.

1st channel

flash
bus

interface

ho
st

 in
te

rf
ac

e

SRAM

uProcessor

buffer
memory and

manager

2nd channel

Cth channel

…

Wth way

NAND
flash
chip

1st way

Wth way

NAND
flash
chip

1st way

Wth way

NAND
flash
chip

1st way

Fig. 1 Architecture of NAND flash-based storage system

Preliminaries: An NFM consists of multiple blocks. Each block is
organised with multiple pages. A block and a page are the base units
for erase operations and read/program (write) operations, respectively.
The read operation consists of three phases. In command phase
(tCMD), a command is asserted. In busy phase (tBUSY), a page is read
from the cell array of an NFM to its page register. Finally, it is trans-
ferred to the controller during the transfer phase (tTRANS). The
program operation is similar to the read operation except that the transfer
phase precedes the busy phase. We denote tBUSY as tR in read and as
tPROG in write, since tPROG is about 10 times larger than tR. Also, the
erase operation consists of command phase and erase phase (tBER).

To update a page already written, the page should be erased before
being overwritten. Unfortunately, the erase operation is performed for
all the pages in a block rather than a specific page. For this reason, an
FTL copies the valid pages in the block to an empty block and writes
the new data to the new block. The old block is erased for future use.
ELECTRONICS LETTERS 19th November 2009 Vo

Authorized licensed use limited to: Yonsei University. Downloaded on December 18
The extra operations incur a large performance overhead. When no
more empty block is left, a merge operation occurs to prepare an
empty block by exploiting unused pages of used blocks. It also incurs
a large amount of erase and copy operations. The number of extra
operations critically depends on the algorithm of an FTL. Hence, the
performance analysis of an NFSD should reflect the FTL’s behaviour.

profile
library

system
parameters

FTL

profiler

trace

operation
statistics

proposed
model

average
performance

Fig. 2 Overall flow for fast architecture exploration

Proposed method: Fig. 2 shows the overall flow of the proposed
method. The profiler links an FTL with the profile library for gathering
the operational statistics for the given trace. The statistics include the
number of erase operations, the number of copying operations, and
the number of merge operations. In the next step, the analytical model
takes the statistics as an input and estimates the throughput for the
given hardware parameters. The profiler is similar to those in [3],
hence we omit its details and focus on the analytical performance
model. We describe the analytical model in an incremental way. First,
we show a performance model for a single-channel/single-way
NFSD. Then, we expand the model for an NFSD with multiple channels.
Finally, we provide a performance model for an NFSD with an arbitrary
number of channels and ways.

In general, P, the throughput of an NFSD is expressed as follows:

P ¼
1

N

PN
n¼1

Qn

Tn
ð1Þ

where N is total number of the requests and Qn is the data size of nth
requests. If the page size is S, it is required to transfer a pages given
by Qn/S. Tn is the response time of an NFSD for Qn and defined as
follows:

Tn ¼ T BUF þ T OP þ T M ð2Þ

TBUF and TOP represent the latencies for transferring Qn to/from the
buffer (shown in Fig. 1) and transferring Qn to/from the NFMs, respect-
ively. Also, TM is the time for merge operations. It is zero in read mode,
since the merge operation only occurs when a page is updated. TBUF is
defined as r � Qn � tbclk, where tbclk is the clock frequency of the buffer
and r is a scaling factor to adjust the clock frequencies of the buffer and
the controller. On the other hand, TOP is the read/write time scaled by a

as follows.

TOP ¼
dae tCMD þ a tTRANS þ dae tPROG in write mode
dae tCMD þ dae tR þ a tTRANS in read mode

�
ð3Þ

Note that a for tTRANS is to consider when Qn is not the multiple of
S. Finally, TM for merge operations is defined as follows:

TM ¼ m (2 tCMD þ tR þ tPROG)þ q tBER ð4Þ

where m is the number of copying pages and q is the number of erased
blocks. Both are obtained from the profiling.

Next, we consider the NFSDs with multiple channels (a single way for
each channel) and denote the number of channels as C. We expand the
model by simply redefining a such that a ¼ Qn/(C . S). It means that
higher performance gain is possible by processing the data in parallel.
Even if Qn, S, Qn is divided into smaller pieces to maximise the
parallelism.

Finally, we generalise our model for multichannel/multi-way NFSDs.
We denote the number of ways per channel as W. Since a is the total
work on a single channel, the work for each way is a/W. The complete
write/read of Qn needs to iterate W-way interleaving a/W times. We
show the interleaving behaviour in write operation in Fig. 3. The inter-
leaving starts from the first way. After the completion of its data transfer
phase, the second way immediately starts. Hence, total time for the
command phase and data transfer phase of all the ways is W. (tCMD þ

tTRANS) in the first iteration. The first iteration takes additional tPROG

from the last way, since it cannot be hidden by other ways. The same
behaviour occurs in other iterations. On the other hand, the second
l. 45 No. 24

, 2009 at 02:44 from IEEE Xplore. Restrictions apply.

iteration may start earlier than the completion of the first iteration if the
following two conditions are met. First, the busy phase of the first way is
completed. Secondly, the data transfer phase of the last way is com-
pleted. Then, the second iteration starts as early as K which is
max(tPROG-(W-1) . (tCMD þ tTRANS), 0) with respect to the end of the
first iteration. Similar analysis is possible for read operation but
omitted due to limited space. Finally, we revise TOP for multichannel/
multi-way NFSDs as follows:

TOP¼
dae tCMDþa tTRANSþ tPROGþK ðda=We�1Þ in write mode
dae tCMDþdae tTRANSþda=We{tR�ðW �1Þ tCMD} in read mode

�

ð5Þ

2nd way

1st way

Wth way
…

1st iteration
2nd iteration

…

…

…

…
…

Fig. 3 Timing diagram for write operation with multi-way interleaving

B command phase (tCMD)
data transfer phase (tTRANS)

A busy phase (tPROG)

Results: We compared our method with the method proposed in [4],
where the authors modelled an NFSD in cycle-accurate level and simu-
lated it using a cycle-accurate simulator [5]. We tested the method for 10
different architectures, while varying the number of channels and ways.
We adopted the system parameters from the commercial product [6] and
implemented a profiler for the log-based FTL in [1]. Two synthetic
traces (one for read and one for write) were created for this experiment.
Each trace included 50 000 requests and the size and address of each
request was generated with a uniform distribution. Fig. 4 shows good
agreement of the two methods for both read and write modes. The
average accuracy of our method was 98.7% over the cycle-accurate
simulation and the worst-case accuracy was bounded by 92.7%. On
the other hand, we achieved the analysis speedup by three orders of
magnitude.

0

10

20

30

40

50

60

70

512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB

W
rit

e
th

ro
ug

hp
ut

, M
B

/s

Request data size

1C1W sim
1C1W model
1C2W sim
1C2W model
1C4W sim
1C4W model
2C4W sim
2C4W model
4C4W sim
4C4W model

0

20

40

60

80

100

512B 1KB 2KB 4KB 8KB 16KB 32KB 64KB

R
ea

d
th

ro
ug

hp
ut

, M
B

/s

Request data size

1C1W sim
1C1W model
1C2W sim
1C2W model
1C4W sim
1C4W model
2C4W sim
2C4W model
4C4W sim
4C4W model

a b

Fig. 4 Performance against request data size for various architectures

a Write mode
b Read mode
nCmW sim: cycle-accurate simulation for n-channel/m-way NFSD
nCmW model: proposed method for n-channel/m-way NFSD
ELECTRONICS

Authorized licensed use limited to: Yonsei University. Downloaded on December 18, 2009
Conclusion: We propose a fast performance analysis method for
NFSDs. The method is based on the profiling and an analytical
model. The proposed method was validated against the cycle-accurate
simulation for various architectures. It was proved that our method dras-
tically improved analysis time while maintaining accuracy.

Acknowledgments: This work was supported in part by the IT R&D
programme of MKE/IITA 2009-S005-01 (Development of
Configurable Devices & S/W environment), by the Korea Research
Foundation Grant funded by the Korean Government (MEST) (KRF-
2007-313-D00578) and by Hynix Semiconductor Inc.

The Institution of Engineering and Technology 2009
28 July 2009
doi: 10.1049/el.2009.2166

S.K. Won, S.H. Ha and E.Y. Chung (School of Electrical and Electronic
Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-gu,
Seoul 120-749, Korea)

E-mail: eychung@yonsei.ac.kr

References

1 Kim, J., Kim, J.M., Noh, S., Min, S.L., and Cho, Y.: ‘A space-efficient
flash translation layer for compact flash systems’, IEEE Trans.
Consum. Electron., 2002, 48, (2), pp. 366–375

2 Kang, J.-U., Kim, J.-S., Park, C., Park, H., and Lee, J.: ‘A multi-channel
architecture for high-performance NAND flash-based storage system’,
J. Syst. Archit., 2007, 53, (9), pp. 644–658

3 Kang, J.-U., Jo, H., Kim, J.-S., and Lee, J.: ‘A superblock-based flash
translation layer for flash memory’. EMSOFT’06, Seoul, Korea,
October 2006, pp. 161–170

4 Kim, S., Park, C., and Ha, S.: ‘Architecture exploration of NAND flash-
based multimedia card’. DATE’08, Munich, Germany, March 2008,
pp. 218–223

5 Carbon SoC Designer, Carbon Design Systems Inc.: http://www.
carbonsystems.com/downloads/datasheets/CMS-SoCD.pdf

6 Hynix Semiconductor: ‘HY27UH08AG5B 2G x 8bit NAND flash
memory data sheet Rev.0.2’, January 2008
LETTERS 19th November 2009 Vol. 45 No. 24

 at 02:44 from IEEE Xplore. Restrictions apply.

